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The possibility of the existence and stability conditions for a solitary layer of 
electrically conducting magnetic fluid not resting on solid walls is studied. 

The formation of a stationary, solitary, i.e., not resting on a wall, cylindrical fluid 
layer (Fig. ]) in a homogeneous gas atmosphere is impossible in the hydromechanics of non- 
electrically conductive, nonmagnetic fluids. This is related to the fact that under weight- 
lessness the single forces acting on the fluid layer -- the surface tension forces -- have no 
component equilibrated and directed to the center and drag the layer to the center. A cy- 
lindrical layer can be produced only by utilizing the external gas pressure drop, but such 
a layer, as is later shown, is unstable with respect to the simplest disturbances. The pos- 
sibility of the existence of a stationary layer appears for an electrically conductive mag- 
netic fluid (EMF) through which an electrical current passes and which surrounds a coaxial 
cylindrical solid conductor with current since the radially directed mass forces of electro- 
magnetic origin that occur equilibrate the surface tension forces. 

Exact analytic solutions of the statics equations for an EMF are found below. In par- 
ticular, a solution exists that describes a solitary EMF layer. The solutions obtained are 
investigated as to stability relative to the simplest axisymmetric disturbances. 

Let us formulate mathematically the problem of cylindrical EMF layers (see Fig. 2). The 
cylindrical solid conductor and EMF layers are arranged coaxially under weightlessness. A 
current J0 is transmitted along the central solid conductor and a current Jl > 0 is trans- 
mitted along the EMF layer. The radius of the central conductor is d0 and for the EMF layer, 
the inner radius is a and the outer radius is b, d0 ~< ~ ~< b. The behavior of the EMF is de- 
scribed by the system of equations [1] 

dv 
p - - = ~ l A v - - v p q - f ,  f = ~ o M V  H + [ j  X B ] ,  d i v v = 0 ,  

dt 

OH 
- -  rot [v x H] = ~IMAH, div B : 0, B : ~ol~H = [t o (H -}- M), M : ](H, 

ot (1) 

dT -- XAT-+- ~] a ro[H J' 9cp dt - 2 -  ~ (Viv~+gkvi)2+~lc-l]2' 
i ,  h ~ l  

on the EMF boundaries (r = 6, b) 

(p}  = ~ (K~ § K~) - -  ~o (Mn)~ /2 ,  ( 2 )  

{H} • n = 0, {B} n = 0, P~I . . . .  o = P~, P ~ l ~ b + o  = P=, 

at infinity Htr+oo = 0, where {A} = A- Ae is the jump in the quantity A in the fluid and in 
the surrounding gas (Ae) on the EMF surface, B is the magnetic field induction, and ~M = I/ 
(~0~o C) is the diffusion coefficient of the magnetic field. 

For a fixed EMF (v = 0), under the assumption of constancy of the coefficients o, ~, p, 
~, Cp, ~ the system (I), (2) has the stationary solution 

It==- (Hr; He; H~) = O; 2~-  ~- 2~(b 2_a~) r - - ~ r  ; 0 , 
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Fig. I. Diagram of the location of 
a solitary EMF layer and graph of the 
dependence of the dimensionless mag- 
netic field intensity H (3~/2) (0.1 
m/20 A), on the radius r (m) for 
a = 0.1 m, b = 0.2 m, Jo =--20 A, 
J1 = 40 A. 

,,i+,2+o(i , 2) 
~ b a ~ a2 + b 2 r -2 

z F2 \ 
+ ~ - ~ - l n Q - ~ ) - F 2  -~-? ( 2 r 2 - - a ~ - - b g ,  r E [ a ,  hi, 

w i t h  t h e  mass  f o r c e  d i s t r i b u t i o n  w i t h i n  t h e  EMF 

f = ~ / r  8 + f~/r + ,~r, f = (f; O; 0), 

= - -  ~t o (~ - -  1) A2 ~ O, ~ = --jINopA, ? = --lao (g H- 1) ]~/4 <~ O, 

( a~A ) J~ 
A =  1 _ Jo b~ - a~ - , ] 1 =  

2~ -- ~ (b ~ - -  a ~) 

Because of heating by currents a layer element of length dz liberates heat of an inten- 

(3) 

sity 

Q = d z J  ~o/(aoaa2o) + dzJ~/(axn (b ~ - -  a~)), 

which is either expended in evaporation in the steady regime or is liberated into the sur- 
rounding space. 

If the surrounding external walls have a constant temperature T0, then in the absence 
of convection (v = 0) and evaporation at the temperature, the boundary conditions 

Tl,=bo-O = To, 

= - - q  = - -Q/ (2apXclz ) ,  o >~ b, 
OF r:p 

are given, and the solution (3) allows a stationary continuous temperature distribution 

T = b o q o l n ( b o l r ) +  To, qo=q[p=bo, b < r < b o ,  

T = b (qb - -  Cb/2) In (b/r) § Tb -6 CY/4, 
C = ]2/(~1;9, qb = q/o=b, 

Tb = T[r=b = boqo In (bo/b) H- To, a < r < b. 

The s o l u t i o n  (3)  c a n  d e s c r i b e  a c y l i n d r i c a l  f l u i d  l a y e r  b o t h  r e s t i n g  on a w a l l  ( r  = a 0 ,  
b0)  and  no r e s t i n g  t h e r e o n  (a0 < a < b o ) ,  a s o l i t a r y  l a y e r .  

T h i s  l a s t  c a s e  i s  mos t  i n t e r e s t i n g  s i n c e  t h e r e  i s  no  d i r e c t  a n a l o g  i n  " o r d i n a r y , "  i . e . ,  
n o n e l e c t r i c a l l y  c o n d u c t i n g ,  n o n m a g n e t i c ,  f l u i d s .  I n  t h e s e  n o n e l e c t r i e a l l y  c o n d u c t i n g ,  n o n -  
m a g n e t i c  f l u i d s  ( i . e . ,  J l  = O, ~ = 1) t h e r e  a r e  no mass  f o r c e s  ( f  = 0 ) ,  a nd  u n d e r  c o n d i t i o n s  
of  h o m o g e n e i t y  of  t h e  gas  p r e s s u r e  (pz = P2) a s o l i t a r y  s t a t i o n a r y  l a y e r  i s  i m p o s s i b l e .  For  
an  EMF (J1  = O, ~ ~ 1) t h e  p o s s i b i l i t y  o c c u r s  of  t h e  e x i s t e n c e  of  a s o l i t a r y  l a y e r  r e t a i n e d  
f a r  f r o m  t h e  w a i l s  by  mass  f o r c e s  f i n  a homoge ne ous  gas  a t m o s p h e r e  (Pz = p 2 ) .  T h i s  h o l d s  
i f  and  o n l y  i f  a l e v e l  r = r 0 ( a  < r0 < b) e x i s t s  w i t h i n  t h e  ENF l a y e r  r E [ a ,  b] , a t  w h i c h  
t h e r e  i s  no  mass  f o r c e  f a p p l i e d  to  t h e  EMF e l e m e n t  ( f i r = r 0  = 0 ) ,  a nd  t h e  f o r c e s  f a c t i n g  on 
b o t h  s i d e s  of  t h e  l a y e r  ( r  < r 0 ,  r > r0 )  a r e  d i r e c t e d  d i f f e r e n t l y  and  i n  sum a r e  e q u i v a l e n t  
t o  t h e  s u r f a c e  t e n s i o n  f o r c e .  

F o r #  ~ 1 two s o l u t i o n s  (3)  c a n  e x i s t  f o r  a m a g n e t i c  f l u i d  f o r  a s t a t i o n a r y  s o l i t a r y  e y -  
l i n d r i e a l  EMF l a y e r  w i t h i n  w h i c h  a r e  t h e  l e v e l s  
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r ~ : a  pt--I I-- 
F ~  1 a~ 

_ _  

(the + sign for rl and the -- sign for r2) at which the fluid does not experience the action 
of the mass forces flr=ri = 0. The first solution (near r = rl) exists under the condition 

a 2 i, <--2, and the second for J0 < 0. 

For ~ = I (a nonmagnetic conducting fluid), there is either one such solution of a soli- 
tary fluid layer (under the condition J0 < 0) or (otherwise for J0 > 0) there is no such 
solution (f = 0) and then only a fluid layer pressed to the inner cylinder exists f < 0, 
a0 = a, for constant external gas pressure (Pl = P2). 

There is the question of the stability of the stationary solutions obtained for the 
equilibrium positions of the EMF relative to perturbations of different kinds. The first 
solution is always unstable relative to axisymmetric perturbations disturbing the continuity 
of the layer: f < 0 for a < r < rl, f > 0 for rl < r < b; and for constant pressure in the 
gas the mass force tries to break up the EMF layer at the level r = rl to different sides. 
Later, however, the decomposition of this layer occurs by another means, more energetically 
suitable, and the developing instability is a direct analog of the Rayleigh--Taylor instability 
in ordinary hydrodynamics. The second solution is table relative to rupturing disturbances 
(f < 0 for r 2 < r < b, f > 0 for ~ < r < r2). The single solution for ~ = ] for a nonmag- 
netic conducting fluid is also stable relative to these perturbations. 

Let us investigate the stability of the stationary solution (3) (a, b = const) of an EMF 
relative to small axisymmetric disturbances of a cylindrical layer surface of the form 

a = a (l) ~ a [t=o + a '  exp ( - -~ t ) ,  b : b 1~=o + b' exp (--i~O (4) 

under the condition of conservation of the section area 

S = ~ ( b 2 - - a  2) = const ,  J~ = const .  ( 5 )  

S u b s t i t u t i n g  ( 4 ) ,  (5) i n t o  ( 1 ) ,  (2) in  a l i n e a r  a p p r o x i m a t i o n  in  t h e  a m p l i t u d e s  r e s u l t s  
in a dispersion relationship 

b(t) 
co2pln(b/a) = - -~ (1 / a3@ 1/ba) - - (1 /a ) (dF/da) ,  F = ,f /dr, (6) 

a(t) 

from which it follows that the solution (3) is stable relative to the disturbances (4), (5) 
for 

( 1 In) (dF/da) + o ( 1 la ~ + 1 lb a) < O. (7)  

Thi s  c o n d i t i o n  r e d u c e s  t o  t he  c o n d i t i o n  f o r  w e l l  c o n d u c t i n g  MF (~M + 0) 

[A ~ ((a + d) -a - -  a -  9 + A h ((a + d)-~ - -  a-:)] > 

> A ~ ((a + d) -~ - -  a -a) ~- G ((a + d)-* 4:- a-3)/~o,  d = b - -  a, (8) 

and f o r  w e a k l y  c o n d u c t i n g  MF (qM + oo) 

[A 2 ((a + d) -a - -  a -~) + 2A]1 ((a + d) -~ - -  a -2) 4- 1~ In (a/b)l  

> A 2 ((a + d)-~ - -  a-a) + A h  ((a + d) -2 - -  a -2) + ~ ((a + d) -3 + a -~ ) /~o .  ( 9 )  

The form of the stability conditions (8) and (9) shows that, in contrast to a nonmag- 
netic, nonelectrically conducting fluid, the presence of the factor ~ > I in the left side for 
an EMF broadens the range of physical parameters for which a solitary layer exists that is 
stable relative to the disturbances investigated (4), and the stronger the magnetic proper- 
ties of the EMF, i.e., the higher the possible magnetic permittivity ~, the broader this range 
of allowable physical parameters. In particular, it follows from conditions (8) and (9) that 
a solitary layer of nonmagnetic, nonelectrically conducting fluid is unstable relative to the 
disturbances (4) for any values of the gas pressures Pl, P2. 

The current magnitudes enter the stability conditions (8), (9) of a solitary layer only 
in the form of the ratio Jl/J0. Two contradictory requirements are additionally imposed on 
the absolute values of the currents J0, J1: 
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I) The current should be sufficiently high so that the mass magnetic forces would over- 
come the surface forces directed to the center; 

2) the currents should be sufficiently constrained so that their heat liberation would 
not alter the aggregate state of the EMF and would not produce thermal stresses and 
thermal convection hindering the stability of the layer as a whole. 

Because of (3) or (6) the first condition can be estimated approximately as 

In particular, it hence follows as in the stability conditions (8) and (9) that the higher 
the permittivity ~, the smaller the current needed for the existence of a solitary EMF layer. 

For known highly stable EMF [2-5] these two contradictory requirements on the absolute 
value of the currents are satisfied simultaneously for a certain range of the physical para- 
meters. Estimates show that for currents of J0 ~ 100 A and J1 ~ 8 A an EMF on the basis of 
mercury with admixtures of tin, bismuth, and lithium [2] (o ~ 0.3 N/m, I/~i ~ 5"10 -7 g.m) is 
heated to completely acceptable temperatures T ~ 200~ The boundedness of the ran%e of 
allowable currents is explained by the fact that existing EMF [2-5] are low-concentrations (up 
to 4% by weight) of quite fine particles of approximately up to 50 A in size, and therefore, 
with quite low M. Production of an EM_F with particle concentrations and sizes such as in 
nonelectrically conducting EMF would substantially lower the minimal magnitude of the cur- 
rents needed for the existence of a solitary layer. 

NOTATION 

T, temperature; J0, J1, magnitudes of the electrical currents flowing in the solid con- 
ductor and in the EMF; d0, a, b, radius of the solid conductor, the inner and outer radii of 
the EMF layer; p, pressure; v, M, p, EMF velocity, magnetization, and density; B, H, magnetic 
field induction and intensity; ~0, magnetic permittivity of a vacuum (magnetic constant); KI, 
K2, curvatures of the principal normal sections of the surface; o, ~ Cp, qM, I, EMF surface 
tension, conductivity, specific heat, magnetic field diffusion, heat-conductivity coeffi- 
cients, and Q is the specific power of the heat liberation. 

LITERATURE CITED 

I. B.M. Berkovskii and A. N. Vislovich, "On the hydromechanics of electrically conducting 
magnetic fluids," Eighth International Conference on MHD Energy Conversion, 12-18 Sep- 
tember 1983, Moscow [in Russian], Vol. 5, Inst. Vys. Temp. Akad. Nauk SSSR, Moscow (1983). 

2. A.I. Fedonenko and V. I. Smirnov, "Interaction of particles and aggregation in electri- 
cally conducting magnetic fluids," ~gn. Gidrodin., No. 4, 49-52 (1983). 

3. S.W. Charles and J. Popplewell, "The magnetic properties of ferromagnetic liquids con- 
taining iron particles in mercury," IEEE Trans. Magn., Mag-12, No. 6, 795-797 (1976). 

4. P.L. Windle, "Flowing magnets for power spectrum," British Sci. News, No. 132, 8-10 
(1975). 

5. J. Popplewell, S. W. Charles, and S. R. Hoon, "Aggregate formation in metallic ferro- 
magnetic liquids," IEEE Trans. Magn., }~g-16, No. 2, 191-196 (1980). 

618 


